Robust model matching control of immune systems under environmental disturbances: Dynamic game approach

نویسندگان

  • Bor-Sen Chen
  • Chia-Hung Chang
  • Yung-Jen Chuang
چکیده

A robust model matching control of immune response is proposed for therapeutic enhancement to match a prescribed immune response under uncertain initial states and environmental disturbances, including continuous intrusion of exogenous pathogens. The worst-case effect of all possible environmental disturbances and uncertain initial states on the matching for a desired immune response is minimized for the enhanced immune system, i.e. a robust control is designed to track a prescribed immune model response from the minimax matching perspective. This minimax matching problem could herein be transformed to an equivalent dynamic game problem. The exogenous pathogens and environmental disturbances are considered as a player to maximize (worsen) the matching error when the therapeutic control agents are considered as another player to minimize the matching error. Since the innate immune system is highly nonlinear, it is not easy to solve the robust model matching control problem by the nonlinear dynamic game method directly. A fuzzy model is proposed to interpolate several linearized immune systems at different operating points to approximate the innate immune system via smooth fuzzy membership functions. With the help of fuzzy approximation method, the minimax matching control problem of immune systems could be easily solved by the proposed fuzzy dynamic game method via the linear matrix inequality (LMI) technique with the help of Robust Control Toolbox in Matlab. Finally, in silico examples are given to illustrate the design procedure and to confirm the efficiency and efficacy of the proposed method. & 2008 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

H∞ Observer-based Tracking Control of Stochastic Immune Systems under Environmental Disturbances and Measurement Noises

A robust H∞ observer-based tracking control of stochastic immune response is proposed for therapeutic enhancement to track a prescribed immune response under uncertain initial states, environmental disturbances and measurement noises. The statistics of initial condition, environmental and measurement noises are assumed unavailable. Further, the state variables may not all be available and may b...

متن کامل

Robust Trajectory Optimization: A Cooperative Stochastic Game Theoretic Approach

We present a novel trajectory optimization framework to address the issue of robustness, scalability and efficiency in optimal control and reinforcement learning. Based on prior work in Cooperative Stochastic Differential Game (CSDG) theory, our method performs local trajectory optimization using cooperative controllers. The resulting framework is called Cooperative Game-Differential Dynamic Pr...

متن کامل

A dynamic bi-objective model for after disaster blood supply chain network design; a robust possibilistic programming approach

Health service management plays a crucial role in human life. Blood related operations are considered as one of the important components of the health services. This paper presents a bi-objective mixed integer linear programming model for dynamic location-allocation of blood facilities that integrates strategic and tactical decisions. Due to the epistemic uncertain nature of ...

متن کامل

Monetary and Fiscal Policy Interaction in Iran: A Dynamic Stochastic General Equilibrium Approach

Achieving the goals of price stability, sustainable economic growth, and the improvement of many economic variables require coordination between the monetary and financial authorities. In this study, a new modified Keynesian stochastic dynamic equilibrium general equilibrium model is introduced for Iran and in the framework of game theory, optimal policy of fiscal and monetary authorities are d...

متن کامل

Application of ANN Technique for Interconnected Power System Load Frequency Control (RESEARCH NOTE)

This paper describes an application of Artificial Neural Networks (ANN) to Load Frequency Control (LFC) of nonlinear power systems. Power systems, such as other industrial processes, have parametric uncertainties that for controller design had to take the uncertainties in to account. For this reason, in the design of LFC controller the idea of robust control theories are being used. To improve ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008